Peer Reviewed Journal

ISSN 2581-7795
A Portrayal of Integer Solutions to Non-homogeneous

Ternary Cubic Diophantine Equation

$$
5\left(x^{2}+y^{2}\right)-6 x y+4(x+y+1)=6100 z^{3}
$$

J. Shanthi ${ }^{1}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002,Tamil Nadu, India.

Abstract

This paper aims at determining varieties of non-zero distinct integer solutions to non-homogeneous ternary cubic diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y+1)=6100 z^{3}$

Keywords : ternary cubic, non-homogeneous cubic ,integer solutions Introduction

It is well-known that the Diophantine equations ,homogeneous or non-homogeneous ,have aroused the interest of many mathematicians. In particular ,one may refer [1-10] for cubic equations with three and four unknowns.

While collecting problems on third degree diophantine equations ,the problem of getting integer solutions to the non-homogeneous ternary cubic diophantine equation given by $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y+1)=6100 z^{3}[11]$ has been noticed. The authors of [11] have presented three sets of integer solutions to the cubic equation considered in [11]. The main thrust of this paper is to exhibit other
sets of integer solutions to ternary non-homogeneous cubic equation given by $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y+1)=6100 z^{3}$ in [11] by using elementary algebraic methods. The outstanding results in this study of diophantine equation will be useful for all readers.

Method of analysis
The non-homogeneous ternary cubic diophantine equation to be solved is given by

$$
\begin{equation*}
5\left(x^{2}+y^{2}\right)-6 x y+4(x+y+1)=6100 z^{3} \tag{1}
\end{equation*}
$$

Introduction of the linear transformations

$$
\begin{equation*}
x=5(u+v)-1, y=5(u-v)-1 \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+4 v^{2}=61 z^{3} \tag{3}
\end{equation*}
$$

The process of obtaining different sets of integer solutions to (1) is illustrated below :

Illustration 1
It is observed that (3) is satisfied by

$$
\begin{equation*}
u=5 \alpha^{3 s}, v=3 \alpha^{3 s} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{z}=\alpha^{2 \mathrm{~s}} \tag{5}
\end{equation*}
$$

Using (4) in (2), we get

$$
\begin{equation*}
x=40 \alpha^{3 s}-1, y=10 \alpha^{3 s}-1 \tag{6}
\end{equation*}
$$

Thus , (5) \& (6) represent the integer solutions to (1).

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
Illustration 2
Taking

$$
\begin{equation*}
\mathrm{u}=\mathrm{kv} \tag{7}
\end{equation*}
$$

in (3) leads to

$$
\left(k^{2}+4\right) v^{2}=61 z^{3}
$$

which is satisfied by

$$
\begin{equation*}
\mathrm{v}=61^{2}\left(\mathrm{k}^{2}+4\right) \mathrm{s}^{3 \alpha} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{z}=61\left(\mathrm{k}^{2}+4\right) \mathrm{s}^{2 \alpha} \tag{9}
\end{equation*}
$$

In view of (7), note that

$$
\begin{equation*}
\mathrm{u}=61^{2} \mathrm{k}\left(\mathrm{k}^{2}+4\right) \mathrm{s}^{3 \alpha} \tag{10}
\end{equation*}
$$

Using (8) \& (10) in (2), we get

$$
\begin{equation*}
x=5^{*} 61^{2}(k+1)\left(k^{2}+4\right) s^{3 \alpha}-1, y=5^{*} 61^{2}(k-1)\left(k^{2}+4\right) \mathrm{s}^{3 \alpha}-1 \tag{11}
\end{equation*}
$$

Thus , (9) \& (11) represent the integer solutions to (1).
Illustration 3
Taking

$$
\begin{equation*}
\mathrm{v}=\mathrm{ku} \tag{12}
\end{equation*}
$$

in (3) leads to

$$
\left(4 \mathrm{k}^{2}+1\right) \mathrm{u}^{2}=61 \mathrm{z}^{3}
$$

which is satisfied by

$$
\begin{equation*}
\mathrm{u}=61^{2}\left(4 \mathrm{k}^{2}+1\right) \mathrm{s}^{3 \alpha} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{z}=61\left(4 \mathrm{k}^{2}+1\right) \mathrm{s}^{2 \alpha} \tag{11}
\end{equation*}
$$

In view of (12), note that

$$
\begin{equation*}
\mathrm{v}=61^{2} \mathrm{k}\left(4 \mathrm{k}^{2}+1\right) \mathrm{s}^{3 \alpha} \tag{15}
\end{equation*}
$$

Using (13) \& (15) in (2) , we get
$\mathrm{x}=5^{*} 61^{2}(\mathrm{k}+1)\left(4 \mathrm{k}^{2}+1\right) \mathrm{s}^{3 \alpha}-1, \mathrm{y}=5^{*} 61^{2}(1-\mathrm{k})\left(4 \mathrm{k}^{2}+1\right) \mathrm{s}^{3 \alpha}-1$
Thus , (14) \& (16) represent the integer solutions to (1).
Illustration 4
Taking

$$
\begin{equation*}
\mathrm{v}=\mathrm{z} \tag{17}
\end{equation*}
$$

in (3) , it is written as

$$
\begin{equation*}
u^{2}=z^{2}(61 z-4) \tag{18}
\end{equation*}
$$

It is possible to choose the values of z so that the R.H.S. of (18) is a perfect square and hence the corresponding values of u are obtained.

In view of (17) ,the values of v are found .Substituting these values of v, u
in (2), the respective integer solutions to (1) are found. The above process is exhibited below:

Let

$$
\begin{equation*}
\alpha^{2}=61 z-4 \tag{19}
\end{equation*}
$$

which is satisfied by

$$
\mathrm{z}_{0}=8, \alpha_{0}=22
$$

Assume

$$
\begin{equation*}
\alpha_{1}=\mathrm{h}-\alpha_{0}, \mathrm{z}_{1}=\mathrm{z}_{0}+\mathrm{kh} \tag{20}
\end{equation*}
$$

to be the second solution to (19). Substituting (20) in (19) and simplifying, we have

$$
\mathrm{h}=2 \alpha_{0}+61 \mathrm{k}
$$

In view of (20) , one has

$$
\alpha_{1}=\alpha_{0}+61 \mathrm{k}, \mathrm{z}_{1}=\mathrm{z}_{0}+\mathrm{k}\left(2 \alpha_{0}+61 \mathrm{k}\right)
$$

The repetition of the above process leads to the general solution to (19) as

$$
\begin{align*}
& \alpha_{\mathrm{n}}=\alpha_{0}+61 \mathrm{kn}=22+61 \mathrm{kn}, \\
& \mathrm{z}_{\mathrm{n}}=2 \mathrm{nk} \alpha_{0}+61 \mathrm{k}^{2} \mathrm{n}^{2}+\mathrm{z}_{0}=44 \mathrm{kn}+61 \mathrm{k}^{2} \mathrm{n}^{2}+8 \tag{21}
\end{align*}
$$

From (18), it is seen that

$$
u_{n}=(61 k n+22)\left(61 n^{2} k^{2}+44 k n+8\right)
$$

Also , from (17) , note that

$$
v_{n}=\left(61 n^{2} k^{2}+44 k n+8\right)
$$

In view of (2) ,the integer solutions to (1) are given by

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=5(61 \mathrm{kn}+23)\left(61 \mathrm{k}^{2} \mathrm{n}^{2}+44 \mathrm{kn}+8\right)-1, \\
& \mathrm{y}_{\mathrm{n}}=5(61 \mathrm{kn}+21)\left(61 \mathrm{k}^{2} \mathrm{n}^{2}+44 \mathrm{kn}+8\right)-1
\end{aligned}
$$

alongwith (21).
Illustration 5
Taking

$$
\begin{equation*}
\mathrm{u}=\mathrm{z}=4 \mathrm{~s}+1 \tag{22}
\end{equation*}
$$

in (3) , it is written as

$$
v^{2}=(4 s+1)^{2}(61 s+15)
$$

Following the process as in Illustration 4 ,the corresponding integer solutions to (1) are found to be

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=5(61 \mathrm{n}+26)\left(244 \mathrm{n}^{2}+200 \mathrm{n}+41\right)-1, \\
& \mathrm{y}_{\mathrm{n}}=-5(61 \mathrm{n}+24)\left(244 \mathrm{n}^{2}+200 \mathrm{n}+41\right)-1, \\
& \mathrm{z}_{\mathrm{n}}=\left(244 \mathrm{n}^{2}+200 \mathrm{n}+41\right) .
\end{aligned}
$$

Illustration 6
Assume

$$
\begin{equation*}
\mathrm{z}=\mathrm{a}^{2}+4 \mathrm{~b}^{2} \tag{23}
\end{equation*}
$$

Express the integer 61 on the R.H.S. of (3) as the product of complex
Conjugates as follows

$$
\begin{equation*}
61=(5+i 6)(5-i 6) \tag{24}
\end{equation*}
$$

Substituting (23) \& (24) in (3) and employing the method of factorization, consider

$$
\begin{equation*}
u+i 2 v=(5+i 6)(a+i 2 b)^{3} \tag{25}
\end{equation*}
$$

Equating the real and imaginary parts in (25), the values of \mathbf{u}, \mathbf{v} are found.
In view of (2),the values of x, y are given by
$x=5\left[8\left(a^{3}-12 a b^{2}\right)-7\left(3 a^{2} b-4 b^{3}\right)\right]-1$,
$y=5\left[2\left(a^{3}-12 a b^{2}\right)-17\left(3 a^{2} b-4 b^{3}\right)\right]-1$
Thus, (23) \& (26) give the integer solutions to (1).

ISSN 2581-7795
Note 1:
Apart from (24), one may consider the integer 61 on the R.H.S. of (3) as

$$
61=(6+i 5)(6-i 5)
$$

giving a different set of integer solutions to (1).

Conclusion:

In this paper, we have made an attempt to find infinitely many non-zero distinct integer solutions to the non- homogeneous cubic equation with three unknowns given by $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y+1)=6100 z^{3}$. To conclude, one may search for other choices of solutions to the considered cubic equation with three unknowns and higher degree diophantine equations with multiple variables. References:
[1]. Dr.S.Vidhyalakshmi, Dr.J.Shanthi, Dr.M.A.Gopalan, "Observation on the paper entitled Integral solution of the Homogeneous ternary cubic equation $x^{3}+y^{3}=52(x+y) z^{2} "$, International journal of Multidisciplinary research Volume 8, Issue 2, Page No.266-273, February 2022
[2]. Dr.J.Shanthi , Dr.M.A.Gopalan, "On Non-Homogeneous cubic Equation with Four unknowns $x^{2}+y^{2}+4\left(35 z^{2}-4-35 w^{2}\right)=6 x y z "$, Bio science Bio Technology Research Communication, Volume 14, Issue 05, 126-129, March2021,
[3]. Dr.J.Shanthi, Dr.M.A.Gopalan, "A Search on Non-Distinct Integer Solutions to Cubic Diophantine Equation with four unknowns $x^{2}-x y+y^{2}+4 w^{2}=8 z^{3}$, International Research Journal of Education

ISSN 2581-7795
and Technology, Volume 2 Issue 01, Page No:27-32, May 2021,
[4]. Dr.J.Shanthi , Dr.M.A.Gopalan, "On the non-homogeneous cubic
Diophantine equation with four unknowns

$$
\mathrm{x}^{2}+\mathrm{y}^{2}+4\left(\left(2 \mathrm{k}^{2}-2 \mathrm{k}\right)^{2} \mathrm{z}^{2}-4-\mathrm{w}^{2}\right)=\left(2 \mathrm{k}^{2}-2 \mathrm{k}+1\right) \mathrm{xyz} \quad ",
$$

International journal of Mathematics and Computing Techiques, , Volume 4, Issue 3, Page No:01-05, June 2021.
[5]. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$ ", International Journal of Applied Research, 1(8), 209-212. 2015
[6]. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, "On the cubic equation with four unknowns $x^{3}+4 z^{3}=y^{3}+4 w^{3}+6(x-y)^{3}$ ", International Journal of Mathematics Trends and Technology, 20(1), 75-84. April 2015
[7]. S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, "A Search On the Integer Solutions of Cubic Diophantine Equation with Four Unknowns $x^{3}-y^{3}=4\left(w^{3}-z^{3}\right)+3(x-y)^{3}$ ", International Journal of Engineering And Science, 10(8), 13-17. August 2020
[8]. M.A. Gopalan, N. Thiruniraiselvi and V. Kiruthika, "On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3} "$, IJRSR, 6(9), , 6197-619 ,Sep-2015
[9] .M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, "On homogeneous cubic equation with four unknowns $x^{3}+y^{3}=21 z w^{2} "$, Review of Information Engineering and Applications, 1(4), , 93-101. 2014
[10]. S. Vidhyalakshmi, T.R. Usha Rani, M.A. Gopalan, V. Kiruthika, "On the cubic equation with four unknowns $x^{3}+y^{3}=14 z w^{2} ", \operatorname{IJSRP}, 5(3), 1-11$, 2015
[11]. K..Manikandan ,R.Venkatraman ,Integral solutions of the ternary Cubic equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y+1)=6100 z^{3}$, AIP Conference Proceedings ,2852,020003-1-020003-4,2023

